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ABSTRACT 
Ten different finite-difference schemes for  the numerical integration of the primitive equations for the free- 

surface model are  tested for stability  and accuracy. The integrations show that  the  quadratic conservative and  the 
total energy  conservative schemes are more stable  than  the usual second-order conservative  scheme. But  the most 
stable schemes are those in which the finite-difference approximations to  the advection  terms are calculated over nine 
grid points in space and therefore  contain a form of smoothing,  and. the generalized Arakawa scheme, which for 
nondivergent flow conserve mean  vorticity,  mean  kinetic energy, and mean square vorticity. 

If the integrations are performed for more than 3 days, it  is shown that more than 15 grid  points per wavelength 
are probably needed to describe with accuracy the movement and development of the  shortest wave that initially is 
carrying  a significant part of the energy. This is true even if a fourth-order  scheme in space is used. 

Long-term  integrations using the leapfrog  method or midpoint  rule in  time  may lead to  instability of the  integra- 
tion from  the increase of energy  on the  computational modes. Elimination of the  computational modes by using a 
smoothing  operator in time or by using other  multistep time-integration  methods, which damp  the  computational 
modes,  will improve the  stability of the integration. 

As a rule, linear stable one-step methods have  strong built-in  dissipation and  in a few days will damp  out most of 
the initial perturbation energy, even if they  are used only intermittently once a day. 

1. INTRODUCTION 

Numerical  integration of the nonlinear  initial  value 
problems in fluid dynamics  and meteorology may  intro- 
duce  computational  instability  from  the finite-difference 
approximation to the nonlinear  terms of the equations. 
This  instability, caused by  the finite  number of waves 
that  can  be resolved in a  grid and  that  cannot  be  sup- 
pressed by using a  shorter  time  step, was first demon- 
strated for the  vorticity  equation describing two-dimen- 
sional incompressible flow by Phillips (1959) ; Miyakoda 
(1962) showed that this  type of instability  may also 
occur for the  linear  equations  with  variable coefficients. 
The most commonly  used methods to  suppress  this 
instability  are  to  introduce artificial viscodity terms  in 
the finite-difference equations  or  to  write  the finite- 
difference equations  in  a  form  that conserves certain 
statistical  moments of the  dependent  variables. 

An artificial viscosity term was first  introduced  by 
von  Neumann  and  Richtmyer (1950) in numerical 
calculations of hydrodynamic shocks. They added  a 
nonlinear viscosity term  to  the finite-difference equation 
to enlarge the shock zone. Artificial viscosity is  also 
incorporated  in the finite-difference formulation of Lax 
and Wendroff (1960) and  has been  used by  Houghton, 
Kasahara,  and Washington (1966) in long-term  integration 
of the equations describing barotropic flow with  a  free 
surface. The same  barotropic  equations are also integrated 
by  Shuman and  Vanderman (1966). They use finite- 
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difference approximations to the advection  terms, which 
are  calculated over nine grid points in space;  and  a  form 
of smoothing  is, therefore, introduced  into  the finite- 
difference equations. 

For the  vorticity  equation describing two-dimensional 
incompressible flow, Ardawa (1966) has developed 
spatial finite-difference equations that are  nonlinearly 
computationally  stable by  retaining  in  the finite-difference 
equations some of the  integral  properties of the continuous 
equation,  namely  the  integral of vorticity,  kinetic  energy, 
and  square of vorticity.  But,  as pointed out  by  Arakawa, 
only one of these  quadratic conservative  properties is 
necessary for the solution to  be  nonlinearly  stable. Using 
the same principles, Lilly (1965) has developed a  general 
spatial  momentum  and total energy conservative  finite- 
difference scheme for the nonlinear  terms in the two- 
dimensional barotropic equLtions. This general momentum 
and energy-conserving representation of the nonlinear 
terms  is used by Smagorinsky,  Manabe,  and Holloway 
(1965) in  their general circulation model of the atmosphere. 
Bryan (1963) extended the kinetic energy conserving 
scheme to  the  system of the ,irregular  grid. This  method 
was then used by Grimmer and Shaw (1967) in their 
integration of the free-surface model  on the sphere and 
by  Kurihara  and Holloway (1967) in  the  integration of a 
nine-level primitive model of the atmosphere  with the 
so-called box method. 

The  main purpose of this  study is to compare the 
accuracy and  stability of some of the finite-difference 
schemes  used in these  integrations  and  to see whether 
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other finite-difference schemes  will give more  accurate 
and  stable  integrations. Since all the schemes  used are of 
second-order accuracy, the  results will be  compared in 
particular  with  the results of the  integrations using 
fourth-order schemes in space. The accuracy of the inte- 
gmtions depends also on the resolution in  the model, 
and  the solutions will therefore be examined  when the 
number of grid  points  are increased. 

Long-term  integrations using the leapfrog  method or 
midpoint  rule  in  time  may  lead  to  instability of the i n t e  
gration  from  the  increase of energy on the  computational 
modes. This  instability  is  demonstrated,  and it is shown 
that elimination of the  computational modes by using a 
smoothing  operator in  time or by using other time- 
integration  methods, which damp  the  computational 
modes,  will improve  the  stability of the  integration. 

2. THE  MODEL  AND  BOUNDARY  CONDITION 

The model  used to test  the different finite-difference 
schemes is  the  same model  used by  Roughton,  Kasahara, 
and  Washington (1966); it is a free-surface model,  which 
describes divergent  barotropic  motion  in  an  inviscid, 
incompressible, hydrostatic fluid with  vanishing  stress 
at  its upper  boundary,  and  the fluid is assumed confined 
in a channel  corresponding to a middle-latitude band  on 
the  earth.  The  southern  and  northern boundaries are 
rigid walls where the  normal velocity  components  vanish, 
and it is assumed that  the flow is periodic in  the west-east 
direction  with  a  wavelength  equal to  the length of the 
channel. A p-plane approximation is used. 

Using a Cartesian  coordinate  system  with the x-axis 
in  the west-east  direction  and the y-axis in  the  south- 
north direction, the  equations  for  the model in Eulerian 
form are: 

"2 

where & is  the average  value of the geopotential of the 
free surface. The  equations for' the model may also be 
written in momentum  form,  and  instead of equations 
(1) and (2) we may  use: 

and 

To  make  the coding of the finite-difference equations 
easier, the following  nondimensional variables  are  intro- 
duced : 

X,=") 
As 
X 

t t'=", 
At 

2, =") , vat 
As 

y'=--f Y 
As 

uAt u'=-, 
As 

and 
f '  = jAt 

where As is a grid increment  in space, and At is a time 
increment. With these  transformations, all the equations 
for the model are  the  same except that all the variables 
are  the marked  variables. In  the following  we shall, 
however, omit the markings. 

au du du -+u"+v-- jv+-=o, a4 
at ax ay (1) ax 3. FINITE-DIFFERENCE  OPERATORS  AND 

CONSERVATIVE  REQUIREMENTS 

and 

a4 a(44  W J V )  
at ax ay -0. (3) 

The velocities u  and v are in the x and y direction, respec- 
tively,  and  4=gh  is the geopotential of the fluid, where 
g  is the acceleration of gravity  and h is the height of the 
free surface; j is the Coriolis parameter.  These  equations 
conserve the integrals of mass  and  total energy in the 
channel. The  equation  for  the  total energy is: 

In  the calculations we  will use a  regular grid with 
horizontal  spacing Ax=Ay=A and  with  time  increment 
At ;  though all the variables are  not necessarily de- 
fined in each grid point,  they can be  staggered in time 
and space. To derive the finite-difference equations, 
we  will use the following sum  and difference operators 
adopted  by  Shuman (1962) : 

a z-A ='[a!(x*++of-;)]> 

where Q is the  total area of integration.  The  available 
energy in the model  will  be defined as:  and 
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__z "n- -5 A2 
a =(a) =a+-a, 

dimensional velocity vector,  and v is a two- or  three- 
4 dimensional divergence operator. If (19) is  integrated 

1 over a closed domain V,  the.mean value of a is conserved, 
=-[a(X,+A) "a(3t-A)  +2a(XJI 4 (11) and if we multiply (19) by a and again integrate over the 

closed domain V, the  equation  for  the mean  variance of 
a becomes: . .  where a is an  arbitrary function of the discrete  variable 

x,=iA. Second- and  fourth-order finite-difference ap- 
proximations to  the first and second derivatives of a 2 at s v 2  .T' dv=-sv $ v.pdv. (20) 
can  then  be  written: 

The finite-diff erence schemes for (1 9), which only conserve 
(12) the mean  value of a, are"called  conservative schemes; 

finite-difference schemes that conserve the mean  value 
of a, and  for which the finite-difference equation for the 

-=CY:+O(A~), aa - 
ax 

aa 4 - 1 "2z mean  variance  can  be  written in a finite-difference form 
ax-3 4-3 a 2 z + ~ ( ~ 4 ) ,  (13) analogous to  (20), will be called quadratic conservative "_ 

schemes. For a  regular  grid  in two dimensions, the simplest 
,." second-order conservative scheme for (19) is: -=a,+O(A2), d"a 
ax2 

and 
As shown in section 6, numerical  integrations  with  this 

(15) type of scheme are relatively  computationally  unstable 
if additional smoothinE of the solutions  is not used. The 

aZa 4  1 
~ = 3 a ~ ~ - 3 " 2 " 2 ~ + O ( A ~ ) .  

v 

In order  to  derive  conservative finite-difference schemes linear artificial viscosity term to the equation (see 

convenient to use the following set of identities, which integration methods that also introduce artificial viscosity 
may  be derived from the  operators (8) through (21); terms  in  the  equations,  as Lax and Wendroff methods 

solution may  be smoothed by adding  a  linear or non- 

for the nonlinear in ( l ) ,  (2), (31, (61, and (7), it is Neumann and Richtmyer, 1g50), or we may use tirne 

and 

(1960). 
(16) Another  wav to smooth the solution  is to use a nine- 

point  formula in space  for the finite-difference approxima- 
tion to  the nonlinear  terms,  as  done by  Shuman  and 

(17) Vanderman (1966). The finite-difference equation  for (19) 
' may  then  be  written: 

(18) 
or  with the use of (9) and (1  1) as: 

variable x t = i A .  
Total energy conservative finite-difference schemes for 

the momentum form of the equations  are the same  as 
those derived by Lilly (1965) and used by Grimmer  and 
Shaw (1967) and  by  Kurihara  and Holloway (1967), and 
they will  be given in section 5. Here we shall look more 
closely at the so-called conservative schemes and the 
quadratic conservative schemes (or schemes that conserve 
the first  and second statistical  moment of the variables). 
Consider the  equation: 

The two last  terms  represent  a  form of nonlinear  smooth- 
ing, which does not  alter  the conservative  properties of 
the scheme. Another form of the nine-point scheme is 
used by Jelesnianski (1967) and  Gates (1968) in ocean 
circulation calculations. 

Quadratic  conservative schemes for (19) have been de- 
veloped by Lilly (1965) and  by  Bryan (1966). For a 

aa "fv. (va) =o 
at 

regular grid in two dimensions, these schemes may  be 
(19) written: 

where a is  an arbitrary variable, v is a two- or three- 
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where us and v g  are  the  average  normal  velocity com- 
ponents a t  the boundary of the grid element  with sides 
A which surrounds  the grid point. If u and v are defined 
in  the same grid points as CY, we may define u8=Zz and 
vg=iiy, and we may  get a nonlinear  smoothing of the 

The  quadratic conservative  property of (24) is easily 
demonstrated  by  multiplying  by CY and  adding over all 
the grid points j ,  k. The finitedifference  equation for the 

. solution by defining u,=iizyy and vg=iiyzz. 

. mean  variance  is then: 

Using the  identities (1 1) and (16) gives : 

If the first  sum on the right-hand  side  is  written out using 
the operators (8) through (lo), we can show that this  sum 
is zero and  therefore: 

which is  a finite-difference form  analogous  to the  analytic 
equation (20). 

Let us instead of equation (19) consider the following 
advection  equation: 

dt+v'vff=o. aCY 

We will also try to find a  quadratic  conservative scheme 
for  this  equation.  Integrating  again over a closed domain 
V, the equation for the mean variance of CY is: 

Equation (28) may  be  written : 

-+v* (VCY) -CYv~v=o. aCY 
at (30) 

Using the finite-difference scheme (24) for v (VCY) then 
gives the following quadratic  conservative scheme for (28) : 

The bite-difference equation for the mean variance of 
CY becomes: 

which is  a finite-difference equation  analogous to (29). 
If u,=Uz and vs=iiv, (31) becomes: 

(u:+z [(CYu)z+~:+~:+vz:-CY~:+~:)l=o (33) 1 -2 

or with the use of the operators (8) through (10) as: 

(Yf+ZZCY* +v a; =o, (34) 

which is the same scheme as Shuman's  semimomentum 
form (1962) and  the same scheme used by  Matsuno (1966). 

When CY, u, and v. are given in the  same grid points, 
fourth-order  quadratic  conservative schemes in  space  for 
(19) and (28) may  be  written  in  the  same form as (21), 
(24), and (33), where the fourth-order  finite-difference 
(13) is used instead of the second-order difference in  space. 

If the flow  is nondivergent, v.v=O, the source terms 
at  the right-hand  side of (27) and (32) are zero. If there 
are no  time  truncation  errors,  the  mean  variance of CY will be 
conserved,  and we may  then assume that  the numerical 
integrations of (24) and (31) are free of nonlinear com- 
putational  instability  as defined by Phillips (1959). But 
for  a  divergent flow, v.vfO, the source terms are  not zero, 
and we cannot  guarantee that  the errors  in the source 
terms may not  lead to fictitious  increase of mean variance 
that will give rise to  computational  instability of the 
integration. 

__z -Y 

4. ERRORS IN THE  FINITE-DIFFERENCE  EQUATIONS 
The two main  sources of error  in  approximating  equa- 

tions (19) and (28) by  the finite-difference equations  are: 
one, the derivatives in space  and  time are approximated 
by  truncated  Taylor series with second- or fourth-order 
accuracy;  and  two,  instead of an  infinite wave spectrum 
we have  a  limited wave spectrum, which is  determined by 
the  total  number of grid points  in the area of integration. 
Some of the  errors  may  be reduced by making  a  Fourier 
transform of the equations  and by solving the correspond- 
ing  spectral  equations  instead of the finite-difference 
equations. In the following, let us look at  the difference 
between the spectral  equations for (19) and (28) and 
their finite-difference approximations. We shall assume 
that we are using the  same  number of waves in  the  spectral 
equations as can  be resolved in  the finite-difference equa- 
tions. 

The equations (19) and (28) are  made nondimensional 
with  the  same  transformations as in section 2. For CY, u, and 
v in  the grid point x=j, y=k, and t=r ,  we may  then use 
the following Fourier  substitutions: 

a ( j ,  k, T)==:, nei(mf+nk)l (35) 

u(j ,  k, r )=C&: ,  net(mf+nk),  (36) 

m, n 

m, n 
and 
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The wave numbers m and n are in the x- and y-directions, 
respectively, and &',,,, am,n, and 8',,, are  the time- 
dependent  amplitudes of CY, u, and v at wave number m,n. 
If the number of grid  points  in  the x-direction is 2 M + 1  
and  in  the y-direction 2N+ 1 ,  the wave numbers m and n 
will have  the  values: 

and 

Introducing (35) through (37) into (19) gives the follow- 
ing  spectral  equation  for (;L'm,n; 

4 

( G . n >  t+iX(mA:, g ~ ~ ~ . g ~ + ~ p , g v p ~ ,  p f ) = o  (38) A ?  A ?  

Pd 

where p+p'=m and q+q'=n. 

Second- and fourth-order finite differences for the first 
derivative of CY may  be  written: 

and 

Introducing these into  the finite-difference equations 
(21) and (24) with us=i? and w8=2 gives: 

and 

t 

where 

P+P'= 2nm and q+q'= 

For the second-order finite-difference schemes : 

sm=s(A2)m=sin m 
and 

sT=s(Az);=- (sin m + sin p + sin p ' ) ,  1 
2 

and for fourth-order  finite differences: 

I I .6 

I - 0 . d  
(B) 

I. (C 1 

FIGURE 1.-The interaction coeEcients sm 8; as a function of the 
wave number p for m = ~ / 2 0 ,  H / 2 ,  and 3 ~ 1 4 .  

4 
6 sF=8(A4)7=-  [sin m + sin p + sin p ' ]  

-- 1 [sin 2m + sin 2p + sin 2p'I. ' 12 

The three  sums, when p+p'=m and qfq'=n--"; 2n-n 

when p+p'=m-- 2 rm and qfqf=n; and when p f p '  
In1 

lm I 
27rm 
Im I In1 

=m-- 2 m  and q+q'=n--, represent the aliasing errors 

in  the finite-difference equations. The  truncation errors (or 
the  derivative errors) introduced by  the finite-difference 
approximations to the derivatives  are the differences 
between m and s" or SF and between n and sn or s:. 
The interaction coefficients sm and sp for m=r/20, n/2, 
and 3rf4 are given in figure 1 .  This shows that for 
O<p<m, s;>sm, and the  quadratic conservative scheme 
has in that  part of the  spectrum smaller truncation 

, I  
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/ 

0.4 

-O.E$ 

++.rn=& 

2.0 T / 

FIGURE 2.-The interaction coefficients cm and c? as a function of 
the  wave number p for m=O, ~ 1 2 0 ,   ~ 1 2 ,  and 3 ~ 1 4 .  

errors than  the  conservative scheme; but for p>m and 
p<O, the  truncation errors in  the  quadratic conservative 
scheme increase. At the same  time s; becomes smaller in 
magnitude,  and  the  contribution to the  sum  in (42) from 
these park  of the  spectrum, whicb contains  the  small scale, 
becomes smaller. For  the aliasing terms, we see that 
Is;l<IsmI, and  the  quadratic  conservative scheme, there- 
fore, has  smaller aliasing errors than  the conservative 
scheme. When fourth-order schemes are used, we see that 
the  truncation  errors decrease, but  at  the same  time the 
magnitude of the  interaction coefficients for the aliasing 
terms increase. 

The  Fourier transform of the advective  equation (28) 
and the finite-difference equation (33) may  be  written: 

where 

and 

p+p'=m and p+p'=n, 

where 

c(A2)r=-(sin m+sin p-sin p'), 1 
2 

and 

c (A4),"=-(sin m+sin p-sin  p') 4 
6 

-- (sin 2m+sin 2p"sin 2p') 1 
12 

for second- and  fourth-order finite-difference schemes, 
respectively. The  truncation errors in (44) are  the differ- 
ences between p and  the  interaction coefficient cr and 
between p and c;, and  the aliasing errors are again the 
contributions to  the  sum when p+p'=m  and q+q' 
=n-- 2r7t ; when  p+p'=m-- and q+q'=n; and when 2n-m 

lnl Im I . .  . .  

p+p'=m-- and q+q'=n---- 
2n-m 2 m  
Im I 1 4  

The  interaction coefficients c;: for m=O,  7r/20, 7r/2, 
and  3s/4  are given in figure 2. We see again that  the 
truncation  errors  increase  with increasing m, and that 
the fourth-order scheme has smaller truncation  errors; 
but especially for  large m the aliasing errors are larger 
than  for  the second  scheme. 

If we want to smooth the solution of the advection 
equation (28) by applying  a nine-point formula in space 
for the derivatives, the finite-difference equations for 
(28) may  be  written: 

or 

The Fourier  transforms of these finite-difference equations 
are : 
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( ~ , n ) l + i C ( d ~ n ~ : , , . i z ~ , , , , + d : . " ~ : , , ~ ; , , , , ) = O  (47) BOUNDARY 
t 

P, 9 

and 
- t 
( ~ , n ) t + i C ( d ~ ; ~ ~ ~ , p ~ ~ , , p , + d f : ~ ~ ~ , u ~ ~ , , p , ) = O  (48) 

P,P 

where 

I)+,.={ :-w 27rm and q+ p' = 

1 +cos n I d y l = l c ;  2 I Ilc;l 
FIGURE 3.-The location of u, v, and 6 in the grid when using Lilly's 

and 
Scheme C and the generalized Arakawa Scheme I. 

The truncation  errors  in (45) and (46) will therefore be 
at  least  as large. as  in (33), but  the aliasing errors will 
be smaller. As either m or n goes to &T, the interaction 
coefficients d T n  and dz: go to zero. This means that 
waves with wavenumbersm=&rorn=fn (waveswith 
wavelength  equal to two  grid  increments)  cannot  be 
formed in  the second-order finite-difference equations 
(45) and (46). 

If (45) and (46) are linearized by assuming u=,U=con- 
stant  and v=O, the equations (47) and (48) reduce to: 

The amplification  matrix for (49) may be written: 

difference  equations (45) and (46), we may expect larger 
phase errors than  in  the finitedifference  equation (33). 

5. FINITE-DIFFERENCE  SCHEMES FOR THE 
EQUATIONS  FOR  THE  MODEL 

By  applying the finitedifference  formulations given in 
section 3, finite-difference schemes which are either  spatial 
conservative,  quadratic  conservative, or total energy 
conservative, or finite-difference schemes where the 
derivatives are calculated over nine grid points in space 
may  be  derived for the equations  for the model. To  find 
the differences in the  stability,  the energy distribution, 
and  the phase speed of the waves for the different  types 
of schemes, the following sebs of finitedifference  equations 
are used for the momentum  equations (6), (7), and (3) : 

Scheme A-the quadratic  conservative  momentum 
scheme whereby 

where (J is the eigenvalue. The roots of (50) are: 
and 

w1,2=- iU  sin m 
;:+(;Y)2+(&V),=0. 

& d-[uSin m ( 2 )] 4-1 Each of the equations is written  as  a  spatial  quadratic 
conservative finite-difference equation in the nonlinear 

with the magnitudes : terms.  This scheme will not conserve the  total  energy; 
but for 4=constant,  the kinetic energy will be  conserved. 

J w 1 , 2 J = 1 ,  for  IUlI1. Scheme %"he total energy conservative  momentum 

l+cosn 

scheme is the same  as. used by-  Grimmer  and  Shaw (1967) 
For the linearized  equation this of smoothing will for a free-surface model on the sphere. For a plane model 

not change the amplitude of the solution  or the linear  the finite-d8erence equations are: 
stability  condition, but  the error in the  phase speed of the 
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The  total energy  equation may be written: 

or 

The conservation of total energy will, therefore,  depend 
on the second derivative  in  time of the  variables when 
the leapfrog  method  is  used. 

Scheme C-Lilly's scheme whereby 

__t r z  - 
(Tu) t+ C4'u ;;;")2+ (4 v L >,-fT"V +&z4z=o, "y Y ""Y 

This scheme is used because it is economical in  storage 
and  is  fast, since only  half as many grid points  are needed 
as in the  other schemes. But the scheme has no quadratic 
conservative  properties,  and the integrations become 
computationally  unstable  after  a  short  time  without 
additional  smoothing of the solutions. 

For the equations in advective form (l), (2), and (3), 
the following sets of finite-difference equations will be 
used : 

Scheme E-the equations (1) and (2) may also be 
written as: 

-+- au at ax a ( 7 + 4 ) - v  u2+v= (j+----)=O, av au (58) 
ax ?Y 

and 
&+& dv a (T+4)+u ++v2 (j+&-$ =o. (59) 

a "> 
Using the second-order finite-difference  formula (12) for 
all the derivatives gives the following total energy 
conservative  advective scheme: 

This finite-difference scheme is derived  by  Lilly (1965) 
and differs from  Scheme B in  that  the velocity compo- 
nents  u  and u are  not defined in  the same  grid  points  as 
C$ but  are staggered  in  space  as given in figure 3. 

By linearizing  these  equations  and  neglecting the 
Coriolis terms, we find the linear  stability  condition  for 
this scheme t o  be,  approximately: 

and 

compared to 

for Schemes A and  B. U is the mean  zonal  velocity,  and 
C = 49, where His the mean  height of the  free  surface. 
The difference in the linear stability conditions follows 
from the  fact  that some of the derivatives in the Scheme 
C are approximated by finite differences over one grid 
increment  only, compared to two grid  increments  in 
Schemes A and B. If the same grid increment  in  space  is 
used in the schemes, the time  increment  in  Scheme C has 
to  be  approximately half of the time  increment used in 
Schemes A and B. 

Scheme D-the time-staggered momen tum scheme 
whereby 

( & ) 2 + ( & ~ ) Z + ( & V ) , " f @  +%(4')z=O, 
-t -2 "y -2t -2 

and 

The equation  for  the  total energy becomes: 

or 

I 

The conservation of total energy in this scheme will 
therefore also depend on the second derivative in time of 
the variables, as in Schemes B and C .  

This scheme does not conserve total momentum  in the 
nonlinear  terms,  and it probably  has  large  truncation 
errors since : 

1 -U -U A2 "Y p z y  -u u,=-uU,, u y ,  

5$ "2, v,=- v, v2 ,  

2 
and 

1 "z -2 A2 "z 

2 

which are zero only  when: u,=vzz=O or ZU-F2- ,- z-o. 
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Scheme F-the quadratic conservative  advective scheme 
whereby 

The finite-difference equations are  written  in  spatial 
quadratic conservative  forms according to equations (24) 
and (33). The scheme  will conserve total momentum in 
the nonlinear  terms, but it will not conserve total energy. 
For t$= constant,  this scheme is identical to Scheme  A. 

If we want to  apply  a  nonlinear  smoother to  the equa- 
tions by calculating the derivatives  and the Coriolis-terms 
over nine grid points in space, the finite-difference equa- 
tions may be written in the same  form as the  equations 
(45) or (46), where the finite-difference equations are 
basically given i n  a quadratic conservative  form. For (l), 
(2), and (3), we may  then use: 

Scheme G-the average quadratic conservative  advective 
scheme  whereby 

and 

Scheme H-Shuman's  scheme  such that 

"U -m-z - m-w -L. 

a:+(u uz+v U,+&f v ) =o, 

and 

This scheme is used by Shuman  and  Vanderman (1966). 
Scheme I-generalized Arakawa scheme  whereby 

and 

where ~2u=uzz+uuu. The finite-difference equations  in 
this scheme are derived in Appendix 1. For the non- 
divergent flow, the scheme will conserve kinetic  energy, 
mean  vorticity,  and  mean  square  vorticity. As in Lilly's 
scheme, u, v, and 4 are defined in different locations in the 
grid. The linear  stability condition for this scheme is, 
therefore, approximately 

C--<-, when lUl<<C. At 1 
A " 2  

The  linear  stability condition can be  changed by chang- 
ing u 's  and ZI'S positions in  the grid in figure 3. The  last 
two terms  in (66a) and (66b) may  then  be  written 

and  instead of (66c)  we get 

and  the  linear  stability  condition becomes 

From (66a) and  (66b), we see also that  this scheme has 
nonlinear smoothing  terms. 

Scheme J-fourth-order quadratic conservative advec- 
tive scheme has  the same  form  as Scheme F, but all the 
second-order finite-difference approximations to the de- 
rivatives  are exchanged with  the fourth-order difference 
approximation (1 3). 

6. INITIAL  CONDITION 

In these  experiments the height of the free  surface  is 
given initially,  and the velocity components u and v are 
calculated  from the geostrophic approximation. This will 
introduce  unwanted  gravity-inertia waves in  the solution, 
but  the calculations show that their  amplitudes  are  small. 
Experiments  in which the velocity components were 
determined  from the nonlinear balance  equation,  namely: 

where 

did  not  improve  the  stability of the integrations. In our 
case, this  probably came  from the increase in  the small- 
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TABLE 1 .-Occurrence of computational  instability 

&heme 
Initial Condition I Initial Condition 111 Initial Condition I1 

(days) (days) (days) 

4% 

40 
49 

16 """_"_"_""""." 

"""""""""""" 18 
"".""_""""""" 18 

2 
31  21  11 

gs 
4% 

E4 
32 16 

I 
".""""""""."" I 

>lo0 """""__."""""~ 64 

"""""""""_."" "_""."""""""" 

scale  kinetic  energy  in the  adjusted velocity  field; as shown 
in  table 1, the  stability of the  integrations  depends  on  the 
initial  energy  distribution. The balance  equation (67) was 
solved by the same iterative method used by Eliassen, 
Grammel  tved t, and  Bremnes (1 964). 

To  test  the  stability of the different finite-difference 
schemes, the initial  conditions should have been given 
arbitrarily  to  get a statistical measure of which scheme 
gives the  most  stable  integration.  That, however, is  almost 
impossible from a computational  point of view. We have, 
therefore, chosen to  use three  different  initial  conditions, 
all describing a westerly jet flow with  north-south  pertur- 
bations of different  wavelengths  and  amplitudes along the 
zonal axis of the  jet.  The initial  height fields are: 

I. h (x, y) =Ho+Hl tanh ~ 

9 (31 -YO) 
2 0  

+H,  sech2 ____ D 

11. h(z, y)=Ho+H, tanh - NY-YO) 
2 0  

+Hz sech2 ~ g(yGyO) [ .7 sin ??)+.6 sin (?)I) (70) 

and 

111. h (x, y) =Ho+Hl tanh 7 ~(Y-Yo)  

+Hz sech2 ~ g(ygyO) [ .8 sin ($)+.5 sin (t>l 12172 (71) 

where L is the  length, D is the  width, and yo=D/2  is the 
middle latitude of the channel. Since the initial  velocity 
fields are geostrophic, the height of the free  surface  has  to 
be  constant along the northern  and  southern  boundaries 
to fulfill initially the boundary  condition v=O. T o  avoid 
strong  variation  in  space of the velocity field near  the 
boundaries, Hz is set equal  to zero a t  the  boundaries  and 
at the two rows of grid points  next to  the boundaries. 

In  the numerical  calculations the following values are 
adopted : 

H0=2000 m, L=6000 km, 
Hl= "220  m, D=4400 k m ,  
H2=133 m, f = 1 0-4 sec-1, 
g=lO m sec-2, and /3=1.5-10-11 set" m-l. 

The height fields for the  Initial Conditions I and I1 are 
given in figure 6. 

The  boundary  conditions used in  the  numerkal integra- 
tions  with Schemes A, B, D, E, and E' are: 

"y v=o, $"=o, ;ii;=o, 

-v vY= --2~,,-~, and Z : = ~ V , + ~  

where vn-l and vs+l are  the values of v in the grid points 
next  to  the  northern  and  southern  boundaries,  respectively. 

In  the Schemes C  and I, 4 and u are given at the bound- 
aries  and v in the grid points  next to  the boundaries as in 
figure 3. The boundary  conditions used are v=O in the grid 
points  next  to  the  boundaries. 

In  the average Schemes G and H and  in  the  fourth- 
order Scheme J, two sets of boundary  conditions are 
needed. The simplest  conditions  to use are  that u=O at  the 
boundary  and at  the grid points  next to  the  boundary,  and 
that u and $ are symmetric  across the boundaries. 

7. RESULTS 

All the schemes are  integrated  with  Initial  Conditions 
I and I11 until  instability occurs, using the leapfrog 
method  in  time  with a 10-min time step, except  for  Scheme 
C and I where 5-min time  steps  are  used,  and with a basic 
grid of 31 X23 grid  points in  the west-east  and the south- 
north directions,  respectively. The Schemes E, F, and G 
are also integrated  until  the  integrations become unstable, 
using Initial Condition 11. The integration  is defined to be 
unstable when the  total available  energy has increased 
more  than 10 percent  above its initial value. The available 
energy  is  calculated  from 

1 
2g j k  

AE=--{4,1,(U~,+~,>+($~t-gHo)2j (72) 

where the summation is over all grid  points j, k in the 
area of integration. The results  are given in  table 1. We 
see that  the  stability of t h e  integrations  depends on the 
initial  conditions.  Integrations using Initial Condition 111, 
which initially has energy in wave numbers one and six 
in the 2-direction, are  for all the schemes much  more 
unstable  than  those using Initial Condition I, which 
initially  only  has energy in wave  number  one  in the 
x-direction. Using for the Schemes E, F, and G the  Initial 
Condition 11, which contains energy in wave numbers  one 
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FIGURE 4.-Available energy (top)  and the available energy on the  scale less than 800 km (bottom) aS a function of time for the  dXerent 
schemes using Initial Condition 111 and A=L/30-200 km. 

and  three  in the z-direction, the  integrations became 
unstable  after twice as long  a  time  as when the  Initial 
Condition I11 is used.  We also see that  the differences are 
small between the  total energy  conservative Schemes B 
and  C  and the  quadratic conservative Schemes A  and F. 
The  total energy conservative  advective  Scheme E is more 
unstable,  and the conservative  Scheme D is,  as  expected, 
already  unstable  after 2 days using Initial Condition I, 
but  the mean differences exist between the Schemes A, 
B, C,  and F and  the  space  average Scbernes G and H and 
the generalized Arakawa  Scheme I. For all the  initial 
conditions,  integrations  with  these  three schemes are much 
more  stable  than  integrations  with  the  other schemes. 

If we look at  the variation of the available energy in 
time, we find that  the available energy is almost  constant 
until  a  short  time before the  instability occurs. We  also 
notice that  the available energy on the small  scale, which 
in  this study will  be  defined as the energy on  the  scale 
with wavelength less than 800 km, increases in time,  and 
that  the large-scale energy decreases. The small-scale 
energy is found by a  Fourier  analysis of the u, v, and 6 
fields after each day of integrations. The energy at the 

wave  number m, n is approximated b y  

and  the energy on  the small  scale is defined  as: 

where the same  Fourier  substitutions as in section 4 
are  used. 

The variation of available energy and small-scale energy 
using Initial  Condition I11 is given in figure 4. The differ- 
ences between the Schemes  A, B, C,  and F are  again 
small.  For all these schemes the small-scale energy in- 
creases rapidly,  and  after 10 days approximately 30 per- 
cent of the available energy is in the small scale. For the 
Schemes G, H, and I the small-scale energy increases 
much more slowly and is small  until  instability occurs. 
To see if the increase in the small-scale energy in the 
Schemes A, B, C, and F is due only to the  truncation 
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errors  and the aliasing errors  in the schemes,  we may de- 
crease the timestep or we may increase the number of 
grid  points to  see if the small-scale energy increases at 
the same rate. For this  study,  Initial  Condition I1 will 
be used, and  since the differences between the Schemes A, 
B, C, and F are  small, Scheme F, which has  the  shortest 
computation  time for 1 day of integration, will represent 
the  total energy conservative  and the  quadratic conserva- 
tive schemes. 

Scheme F is integrated  with  a grid increment A=L/30, 
A=L/45, and A=L/60. For the two shortest  grid  incre- 
ments  the  integrations are stopped after 25 days. The 
results  are given in figure 5.  This shows that when the 
grid increment  decreases, the small-scale energy also 
decreases, but  after several  days of integration the small- 
scale  energy  again  increases  rapidly when the  truncation 
errors  and aliasing errors  accumulate. We see also that 
only for the high  resolution  in Scheme E' is  the small-scale 
energy in the first 14 days less than  the small-scale 
energy in Scheme G using the low resolution A=L/30. 
Using a 5-min instead of a 10-min timestep  in  Scheme F 
with A=L/30 gives little difference in the increase of the 
small-scale energy and in the  stability.  The  increase of 
the small-scale energy is, therefore, not directly  related 
to  the  truncation  errors in time but is mostly due  to  the 
truncation  errors  and  aliasing  errors  in  space.  When  the 
low resolution is used in the fourth-order Scheme J, the 
increase  in the small-scale energy  is a little less than for 
Scheme F, but when the high resolution is used the 
difference is insignificant. 

T o  find the errors  in the amplitudes  and the phase  speeds 
of the waves, let us look at  the differences between the 
height fields of the free  surface  after 5 and 10 days of 
integration  for  different schemes and resolutions. Scheme 

F represents  again the second-order quadratic conservative 
and total energy conservative schemes, since  these schemes 
also show great  similarities  in the amplitudes  and the 
phase speeds of the waves for all  initial  conditions. 

040 I I ~ , I I I I I I I . , ,  , , , ,  , , , ,  , , . ,  , , ,  , , , ,  , . , ,  , , , ,  , , , ,  , , , ,  - 
INITIAL CONDITION II 

F ( A = 

O Y )  035 t 

0.10 

0 0 5  O h 5 I  

TIME ( 0.4YS 1 

FIGURE 5.-Available energy (top) as a function of time for the 
Schemes F and G using Initial Condition I1 and A= L/30= 200 km, 
and available energy on  the scale leas than 800 km (bottom) as a 
function of time for Schemes F, G, and J using Initial Condition 
I1 and different grid increments. 

HEIGHT D A Y  0 

I I 

22PO -> 

I I I I l l I I I I 1 I I I I 1 I I I I I l I I 1 1 1 1 1  

FIGURE 6.-Initial height fields (meters) for Initial Conditions I and II as used in  the calculations. Contours  are  drawn for every 50 m. 
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HEIGHT DAY 5 , A - 100 ifn 

FIQURE 7.-Height  fields after 5 and 10 days of integration using the quadratic conservative advective Scheme F, Initial Condition I, 
and the two grid  increments A= L/30= 200 km (top) and A=L/60= 100 km (bottom). The locations of the grid points are  marked 
along the edges, and the contours  are  drawn  for every 50 m. 

The  height fields for the  Initial Conditions I and I1 are 
given in figure 6 ,  and  the  results  after 5 and 10 days using 
Initial Condition I and Scheme F and  the two different 
grid increments A=L/30 and A=L/60 are given in figure 7. 
After 5 days  the  height fields contain  mainly wave  num- 
bers  one  and  two in the x-direction besides the zonal 
flow; the difference in the  amplitudes of the waves  between 
the two resolutions is small, but  the weak trough to  the 
east in the integration  with the high resolution does not 
exist for the low resolution. The main difference lies in the 
position of the troughs. For  the low resolution the trough 
to  the west and  the  trough  almost  in  the middle of the 
channel are approximately 400-500 km farther west 
compared to their positions using the high resolution. 
This difference corresponds to a difference in  the phase 

.speed of approximately 1 m/sec. 

After 10 days  there  are two well-developed troughs when 
the high resolution is used, but these  can  hardly  be  found 
when the low resolution is used. 

The  results of the  integration using the fourth-order 
Scheme J with A= L/30 are given in figure 8. The differ- 
ence between this integration and  the  integration using 
Scheme F with A=Lf60 is very small. After 5 days  the 
amplitudes  and  the positions of the troughs are  almost  the 
same, but  after 10 days  the  trough to the  east is farther 
north  and  the corresponding jetstream is weaker. However, 
for these long waves it seems that in  the first 10 to 15 
days we gain almost  the same  accuracy by using higher 
order schemes as  by doubling the resolution in a second- 
order scheme. 

The height fields using Scheme H (Shuman's  scheme) 
with A=L/30 is given in figure 9. The difference in  the 
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FIGURE 8.-Height  fields after 5 and 10 days of integration using the fourth-order  Scheme J and Initial Condition I. A= L/30=200 km. 
Contours  are  drawn for every 50 m. 
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FIQURE 9.-Height fields after 5 and 10 days of integration using Shuman's  Scheme H and Initial Condition I. A= L/30= 200 km. Contours 
are  drawn  for every 50 m. 

amplitudes  for  the waves between  this scheme and Scheme 
F using A=L/60 is not large even after 10 days;  but  as 
indicated  in section 4, the use of a nine-point formula  in 
space  for the derivatives will give  larger  errors  in the 
phase speeds, and we  see that  the positions of the troughs 
are already  after 5 days 800-1000 km farth'er west than 
the positions of the same  troughs for the high resolution 
in Scheme F. The phase  errors  are especially large  in  the 
space  average Schemes G and H, but less for the general- 
ized, Arakawa scheme. When high resolution is used in 
these schemes as well, the phase  error becomes smaller, 
and  the solutions for the first 15 days  are  very similar to 
the solution  for Scheme F. 

Figure 10 shows the height fields after 5 days for the 
fourth-order Scheme J and  the generalized Arakawa 

Scheme I, using Initial Condition I1 and  the two  different 
grid increments A=L/30 and A=L/60.  For the  first 3 days 
of integrations  with  the  fourth-order scheme, the corre- 
lation between the  height fields using these two resolutions 
is relatively  large, even if the low resolution does not 
give wave  amplitudes quite  as large  as the high  resolution; 
already  after 5 days, however,  we see that  the difference 
between the height fields is very large. In  the generalized 
Arakawa scheme  we can  still find the  three co-esponding 
troughs, but for this scheme as well, the low resolution 
gives too small  amplitudes.  for  the waves. 

These  integrations  indicate  that if we are  integrating 
'for more than 3 days, we need, even in a  fourth-order 
scheme, more than 10 grid  points  per  wavelength  to 
describe the movement and development of a wave that 
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FIQURE 10.-Height fields after 5 days of integration using Initial Condition I1 and the  two grid increments A=L/30=200 km (left) and 
A=L/60= 100 km (right). Contours  are  drawn for every 50 m. (Top: the fourth-order  Scheme J; bottom:  the generalized  Arakawa 
Scheme I). 

initially  carries  a significant part of the energy. Integra- 
tions  with 15 grid  points per wavelength (A=L/45) look 
very  similar  to the integrations  with 20 grid points per 
wavelength (A=L/60) up to 5 days, but beyond that  the 
discrepancies in  the  height fields increase  rapidly  as the 
small-scale energy increases, as shown in figure 5. 

Using the high resolution (A=L/60), we see from figure 
11 that  after 10 days  the differences between the  height 
fields  using the fourth-order Scheme J and  the general- 
ized Arakawa Scheme I are  small, but  in Scheme, J the 
small-scale patterns  have  already become a significant 
part of the  solution. In the first 15 days of the  integra- 
tions,  the  positions of the  troughs  and ridges in the solu-, 
tions  are  almost  the  same for these two schemes; but 
after 15 days  the phase speed in Scheme J decreases as 
the energy on the small-scale increases more  rapidly (see 

fig. 5 )  , and  after 20 days  there  are  hardly  any  similarities 
between  the  solutions. 

As shown in  table 1, integration  with  the  conservative 
time-staggered Scheme D is  very  unstable when addi- 
tional  smoothing is not used. T o  stabilize the  integration, 
linear  viscosity  terms of the form - v ~ V %  and -v@V2v, 
where v is  a  kinematic  eddy  viscosity coefficient, may  be 
added to equations (6) and (7). Using Initial  Condition 
I and A=L/30, the smallest  value of the kinematic  eddy 
viscosity coe5cient  that could be used to make the 
integration  stable  for  more than 2 days was v-105 m2/sec; 
but .  all the  perturbations  in  the flow  were then  damped 
out  in  a few days.  Restarting  the  integration  each 12 hr 
with  a Lax-Wendroff time-integration  method  gave better 
results, since a Lax-Wendroff method  and  other  predictor- 
corrector  methods  damp  the. fast-moving gravity waves 
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FIGURE 11.-Height  fields after 10 and 20 days of integrations  using  Initial  Condition I1 and A= L/60= 100 km.  Contours are  drawn  for 
every 50 m. (Top: the fourth-order  Scheme J; bottorp: the generalized  Arakawa  Scheme I.) 

more than  the slow-moving Rossby waves. But as shown 
in  Appendix 2, these  time  integration  methods will not 
damp waves with  wavelength  equal  to two grid  incre- 
ments  in space. We, therefore,  have to  add linear viscosity 
terms  to  the  equations  to  damp  these waves. As shown in 
figure 12, integrations using a  restart with Lax-Wendroff's 
method each 12 hr and  v23.6X103 mz/sec are  stable for 
more than 20 days.  (With  the use of v=3.6X102  mz/sec, 
the  integration became unstable after 9 days.) For 
v=3.6X103 m2/sec, the available  energy does not decrease 
more than 4 percent  in the first 10 days;  but compared  to 
the  integrations  with Schemes F and J, the  amplitudes 
of t;he slow-moving Rossby waves are  still  damped too 
much even when the high resolution (A=L/60),is used. 

1.2 I , , ,  I , , ,  I , , , I  

INITIAL CONDITION I 

t 
I .o . ..... .._...." - 

Y = 3.6 x IO' me/sec - - - - "=3.6 x IO4 mp/sec - 
" " 

\ -- ""_ 

TIME (DAYS) 

FIGURE 12.-Available energy as a function of time  for the time- 
staggered  conservative  Scheme D, using Initial Condition I and 
a  restart of the  integrations  each 12 hr with  a  two-step  Lax 
Wendroff method. 

8. TIME  INTEGRATION  AND  STABILITY 
is the only commonly used explicit or iterative method, 

In these  experiments  the leapfrog method (or the which has no amplification or damping of the solution 
midpoint  rule)  is used for the  time  integrations. This of the linearized set of equations corresponding to the 
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FIGURE 13.-Variation of the meridional velocity component in  the  point (1.12) with time, using Scheme F and  Initial Condition 111. 
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FIGURE. 14.-Available energy as a  function of time  for Scheme F 
and  Initial Condition 111 using different time integration  methods 
and different eddy viscosity coefficients. 

equations (l), (2), and (3) as long as  the linear  stability 
condition is fulfilled; but it shares the disadvantages 
with  all  multistep  methods,  that  the  solution  has to  be 
given a t  more than one  time level for each  time step,  and 
that  the finite-difference equations allow  more than 
one set of solutions. Only one of these sets is physical; 
the others are computational. In the linear case the 
amplitude of the  computational modes in the leapfrog 
method may be made small by  the  starting procedure 
(Miyakoda, 1962), and since there is no coupling between 
the different modes they will always remain small there- 
after. In  the nonlinear case, however, there  is  a coupling 
between the different modes, and we have to expect that 
the  amplitude of the  computational modes will change 
when the  amplitude of the  physical. modes change. If 
we look a t  t%e variation  in  time of the variables a t  a 
fked  point, we see that high frequency oscillations are 
developing; and  a few days before the  integration becomes 
unstable,  a 2At oscillation is formed,  as shown in figure 13 

for the v-component in  the  point (1.12), which is situated 
in  the middle of the channel, using Scheme P and  Initial 
Condition 111. From (55) and (62), it follows that  the 
conservation  in  time of available  energy using the  leap- 
frog  method also depends on the second derivatives  in 
time of the variables. The  stability  may therefore be 
improved by damping the highest frequency oscilla- 
tions, which in this model are  due  to  the  short  physical 
gravity-inertia waves and  the  computational waves. The 
short waves may  be damped by adding  linear  viscosity 
terms  to  the  equation of motion, and  the 2At oscillation 
from the computational waves may  be  damped  by  ap- 
plying a smoothing  operator in time for each variable. 
The smoothing  operator 

where a' stands for any variable in  the grid point x=j, 
y = k  a t  time t = ~ ,  will damp  the high frequency oscilla- 
tions and  completely remove the 2At oscillation from the 
iptegrations if it is used a t  two sequential  time  steps. 

The energy variation  in  time, using equation (75) after 
each  day of integration for Scheme P and Initid Con- 
dition 111, is given in figure 14. We see that  the  stability 
increases and  the  integration becomes unstable  after 30 
days compared to 16 days  without  any  smoothing. 

Other  linear,  stable  multistep  time  integration  methods, 
which damp  the  computational modes, and  linear  stable 
one-step methods for the linearized set of equations  are 
examined by  Kurihara (1965), and we wiU use two of his 
methods,  theleapfrog-trapezoidal  predictor-corrector  meth- 
od and the Euler-backward  predictor-corrector  method. 
We will also use the two-step Lax-Wendroff method de- 
veloped by  Richtmyer (1963). These  methods  are  given 
in Appendix 2. 

The leapfrog-trapezoidal method  has for the linear equa- 
tions only weak damping of the physical modes, but strong 
damping of  t,he computational modes. From figure, 14, it 

'k. 
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follows that integration  with  this  method for Scheme F 
and  Initial Condition I I I ' i s  more  stable  than using the 
leapfrog  method  with smoothing  once a day.  For other 
schemes these two methods give very  little difference in 
the  stability  and  in  the  time  variation of the  energy; 
hence, integrations  with  the total energy conservative 
Scheme B seem always to be stable. The  computation time 
for  the leapfrog-trapezoidal  method  is  almost twice as long 
as the  computation  time for the leapfrog  method.  Espe- 
cially for long-term  integrations,  therefore, it is more 
economical to use the leapfrog  method  with an  intermit- 
tent time  smoother than  the leapfrog-trapezoidal method. 

For  the linear  equations, the Euler-backward  method 
and  the Lax-Wendroff method  have  the  strongest  damping 
of the waves with  wavelength  equal to four  grid incre- 
ments  and  little damping of the  very long and  very  short 
waves;  they  damp  the  fast-moving  gravity-inertia waves 
more than  the slow-moving Rossby waves.  As  shown in 
figure 14 for Scheme F and  Initial Condition 111, the 
Euler-backward  method gives a decrease in available 
energy, which corresponds to  the use of the leapfrog 
method  with  linear viscosity terms,  with  an  eddy viscosity 
coefficient V- lo4 m2/sec added to the equations of motion. 
The dissipation of energy using the Lax-Wendroff  method 
is sligh.tly larger than using the Euler-backward  method, 
but as pointed out  by  Kurihara,  the effect of the dissipa- 
tion  may  be reduced by using the leapfrog  method at  most 
of the  time  steps  and only using the  other  methods  inter- 
mittently  to  damp  the  gravity-inertia waves. Doing so by 
restarting  the  integration  after each day using the Lax- 
Wendroff method still gives a  strong  damping of the 
available energy, as shown in figure 14. 

9. SUMMARY  AND  CONCLUSIONS 

Ten different finite-difference schemes for the numerical 
integration of the equations describing barotropic motion 
in  an inviscid, incompressible, hydrostatic fluid with a free 
surface  are  tested for stability  and  accuracy.  The  inte- 
grations show that  the  quadratic conservative  and total 
energy conservative schemes are  more  stable than  the 
conservative  schemes; but  the space  average schemes, in 
which the derivatives in space  are  calculated over nine 
grid points,  and the generalized Arakawa scheme give the 
most  stable  integrations. 

The space  average schemes and  the generalized Arakawa 
scheme have  larger  phase  errors than  the  other schemes; 
they  have a smaller growth rate of the small-scale energy 
and keep the energy  on the larger scale for  a long time. 
When the grid  increment  in the  quadratic conservative 
and  total energy conservative schemes is decreased from 
A=L/30 km to A=L/60 k m ,  the growth  rates of the small- 
scale energy also decrease, and  in  the first 2 weeks the 
small-scale energy is little less than  the small-scale energy 
using the space average schemes and  the generalized 
Arakawa scheme with  grid  increment A=L/30 km.  The 
decrease in  the small-scale energy with decreasing grid inere- 

ment  indicates  that  the growth of the small-scale energy 
is  mostly  due  to the  truncation  errors  and aliasing errors 
in  the schemes. 

If the  integrations  are performed for more than 3 days, 
we probably need more than 15 grid points  per  wavelength 
to  describe with any accuracy the movement  and  develop- 
ment of the  shortest wave  which initially  is  carrying a 
significant part of the energy, and if we integrate  for a 
longer time, we  need  even higher resolution. Some of  the 
phase errors  and the amplitude errors may  be reduced by 
using fourth-order schemes in space. However, fourth- 
order schemes have  larger aliasing errors than second-order 
schemes, and  after a few days when these schemes are 
used, there  is also a  rapid increase of small-scale energy. 

The conservation of total energy depends also on the 
second derivative  in  time of the  dependent  variables when 
second-order time  integration  methods  are used. The 
stability of long-term integrations may therefore be im- 
proved by periodically using a smoothing operator  in  time 
when a leapfrog rnethod is used, or by using linear stable 
multistep  methods that will damp  the highest  frequency 
oscillations in time. 

As a  rule,  linear  stable one-step methods  have  strong 
built-in dissipation and  in a few days will damp  out  most 
of the  initial  perturbation energy, even if they  are used 
only intermittently once a day. 

APPENDIX 1 
THE  GENERALIZED  ARAKAWA  SCHEME 

The finite-difference scheme  developed by Arakawa 
(1966) for the two-dimensional vorticity  equation describ- 
ing frictionless non-divergent flow in a closed domain may 
be  written: 

where 1c. is the  stream  function,  and {=V2#, and otherwise 
using the same  notation as in  section 3. In the closed 
domain  this scheme  will conserve the  integral of vorticity, 
kinetic energy, and  square of vorticity. 

For  the equations (l), (2)) and ( 3 )  describing barotropic 
frictionless divergent flow with  a free surface, we want 
to derive  a finite-difference scheme which reduces to 
equation (76) when the divergence V *v=O. To do so 
we need to  rewrite  equation (76) in a form using the 
horizontal velocity components u and v in  the x and y 
direction,  respectively,  instead of the  stream  function + 
and the  vorticity {. 

If for the velocity  components 

we use the second-order finite-difference approximations 

u=-+, and v=&, 
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we see that  the problem lies in  the form of the second 
Jacobian in  equation (76). With use of equation (18), 
this Jacobian  may  be  rewritten  as: 

The first  and the  last  Jacobian  in equation (76) may  be 
combined into : 

Introducing  equations (78) and (79) together  with the 
velocity  components u and v into (76) then  gives: 

+*:+fi:}=o. (80) 

The vorticity  and the divergence are  approximated by: 

and 

From equations (81) and (82) it follows that 

rY=vzY-uY~= - (usz+uyv)= - v u  (83) 

~2=vzz-uvz=vxz+vYY=~~V. (84) 
and 

Introducing  equations (81), (83), and (84) into (80) 
gives : 

Using equation (16) we see that: 

and 

and  equation (85) may  be written: 

To integrate  the  vorticity equation we may  therefore 
use equations (88) and (82) instead of (76); a finite- 
difference scheme for  the barotropic  equations (I), (2), 
and (3), which is  a generalization of Arakawa's scheme 
for the  vorticity  equation, is then: 

- v f + $ {  2 ; i i " ~ ~ + ~ ~ + ~ Y ~ Y ) Y + ) ( v ( v + A 2 . 9 1 2 0 ) ~ } + f ~ + ~ = I P ,  

z+ G2uL+ GYv)Y=o 

(89) 
and 

where the location of u, v, and t$ in the grid are given in 
figure 3. 

APPENDIX P 
TIME  INTEGRATION  METHODS 

In this study four  different  time  integration  methods  are 
used: the leapfrog method,  the leapfrog-trapezoi da8 
method, the Euler-backward  method,  and the two-step 
Lax-Wendroff method.  These  methods  are examined by 
Kurihara (1965) and  by  Houghton,  Kasahara,  and  Wash- 
ington (1966) using the linearized  set of equations cor- 
responding to  equations ( l ) ,  (2), and (3). Here we will 
review some of the  characteristics of these  methods for 
these linearized equations. 

When the coriolis terms  are neglected in  the  linearized 
equations,  they reduce to three  independent  equations 
that formally  may  be  written: 

where a stands for  any of the  perturbation  quantities 
u & t $ / r H  and v, and c stands for the values U S t m  and 
U. U is the mean zonal velocity, H is  the mean height of 
the free surface, and 9 is  the acceleration of gravity. If the 
cariolis terms  are  included,  there will be only  a  small 
change in  the phase speed c and  in  the  linear  stability 
conditions  for  these  methods, except for  the Lax-Wendroff 

-2y-2 
X 

"2@ ~ , ~ z - ( ~ Y u 3 z = " [ ( u  u ) z + ~ u 2 2 ] Y  
2 - z  - method, where the coriolis terms  may  lead to a weak 

instability of the  solution. 
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Making equation (90)  nondimensional with the  same 
substitutions  as  in section 2, a  solution of (90) for s=j 
and t=r is: 

a( j,?) =Aet(er+nf l  (91)  

where n is the wave number  and e=--en is the frequency; 
c is the exact  phase speed of the waves. Approximating 
the space  derivative by: 

&", a, -z 

and  introducing the Fourier  term a(r,j) =arein' into equa- 
tion (90)  gives: 

- +ic sin nar=Q. a f f r  

at (92) 

Using the  four time  integration  methods,  the finite- 
difference  equations for (92)  and some of their  characteris- 
tics  are: 

Leapfrog method 

( ~ ~ + l - a " ~ + 2 i c  sin nar=Q. (93)  

Introducing 
f f r + L w f f r = w I a o ,  (94 1 

where w is  the amplification factor,  into (93) gives 

u2+2ic sin nw"l=O.  (95)  

The von Neumann necessary condition for stability is 
that  the  magnitude of w does not exceed unity.  The  roots 
of (95)  are: 

~ ~ . ~ = - i c  sin nf -J -c2  sin2 n + l ,  (96) 

where w1 is  the amplification factor for the physical mode, 
and is the amplification factor  for  the  computational 

-.-. LEAPFROG """_ LEAPFROG-TRAPEZOIDAL 
" EULER-BACKWARD 

LAX-  WENDROFF 

r 

0.4 c 

n 

FIQURE 15.-The  amplification factor 101 for c = x  as a function of 

mode. The magnitudes of w1,2 are: 

I w I =  1 for c s l .  

Leapfrog-trapezoidal method 

&,-I- - 2ic sin nar 

aI+l- -a I ->iic sin n ( z+a~> .  
and 

(9 7) 
Introducing  equation (94)  into (97)  gives: . ..v- 

. , .I . .  

w2--[1-(c sin n)2-j4k sin n]w+)lk  sin n=O. (98)  

The  roots of equation (98) are: 

~ ~ , ~ = j 4 [ 1 - ( c  sin n)">iic sin n] 

k>iJ[1- (c sin n)z->iic sin n12-2ic sin n, (99)  

and the magnitudes of the amplification factors  are: 

(wl ,z(<l  for c < @ .  

Euler-backward method 
:= (1-k sin n)ar 
,r+i = w sin ng 

ar+l- - wr, 

(100) 
or 

where the amplification factor w is: 

The  magnitude of w becomes: 

and 

w = l -  (c sin n)2-ic sin n. (101) 

I d I = l - ( c  sin n)"(c sin n)4 (102) 

( w 2 1 1 1  for c l l .  

-.-. LEAPFROG 
"" - "- LEAPFROG - TRAPEZOIDAL 
" EULER  -BACKWARD 
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FIGURE 16.-Ratio of the approximated  phase speed to the true 
value of the phase speed for c=O.1 as a function of the wave 

the wave number n for the different time integration methods. number n for the different time integration methods. 



404 MONTHLY WE 

Two-step Lax-Wendroj method 
d + l =  (cos n-ie sin n)a’ 

d + 2 -  -a r “2ie sin n CP and 
(103) 

Or 
ff’+2 = wff‘ 

where 

The magnitude of w is given by: 

and 

w= 1-2c sin2 n”2k sin n cos n. (104) 

Iw21=1“4c2 ( I -&)  sin2n (105) 

la21 21 for c < l .  

Except  for  the leapfrog method, which has no damping 
of the amplitudes of the waves, it follows  from equations 
(99), (102), and (105) that  the damping of the amplitudes 
using the other  methods is largest for wave number 
n=n/2, and  there  is no dampling for n=O and n=n. 
n=n corresponds to a wave with  a  wavelength of two 
grid increments,  and we may, therefore, expect that  the 
short waves may grow and  eventually  dominate the 
solutions when these  methods-  are used in  numerical 
integrations of nonlinear  equations. 

The amplification factor IwI for c=% is given in figure 15. 
We see that  the leapfrog-trapezoidal method  has  a  strong 
damping of the  computational mode but only weak 
damping of the physical mode. The Euler-backward 
method  damps  the wave with wavelength of four  grid 
increments (n=n/2) almost 10 percent for each timestep, 
and  the two-step Lax-Wendroff method  damps the same 
wave 50 percent, but after two time  steps.  When c is 
larger, the damping of the physical mode is also larger, 
but  the damping of the  computational mode in  the 
leapfrog-trapezoidal method is smaller. 

The approximated  phase speeds of the waves for the 
different methods  may  be  found from equations (96), 
(99), (101), and (104), and  in figure 16 is given the  ratio 
of the approximated  phase speeds c, to  the  true value of 
the phase speed c for c= .1. The errors  in the phase speeds 
for  the leapfrog method, the leapfrog-trapezoidal method, 
and  the  Euler-backward  method  are  almost the same,  and 
we see that  the errors in  the phase speeds are more than 
10 percent for waves with wavelength  less than eight  grid 
increments ( n = ~ / 4 ) .  For the two-step Lax-Wendroff 
method,  the  errors  in  the  phase speeds are even larger, 
and  the  phase speeds become negative for the  short waves 
(7r/2<n<7r) and will therefore change sign each two time 
steps  for  these waves. 
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